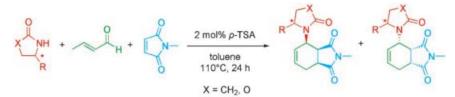
SPOTLIGHTS ...


Multicomponent Reactions

S. Hübner, H. Jiao, D. Michalik, H. Neumann, S. Klaus, D. Strübing, A. Spannenberg, M. Beller*

In Situ Generation of Chiral N-Dienyl Lactams in a Multicomponent Reaction: An Efficient and Highly Selective Way to Asymmetric Amidocyclohexenes

Chem. Asian J.

DOI: 10.1002/asia.200600428

Three Amigos: The employment of chiral amides in combination with aldehydes and dienophiles in our novel multicomponent procedure allows the simple and efficient synthesis of amido-functionalized cyclohexene de-

rivatives (see scheme; *p*-TSA = *para*-toluenesulfonic acid). The multicomponent methodology circumvents the circuitous preparation of chiral *N*-dienyl lactams as they are generated in situ.

Polyketide Synthases

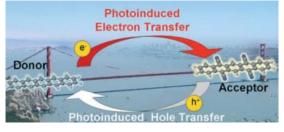
S. Grüschow, T. J. Buchholz, W. Seufert, J. S. Dordick, D. H. Sherman*

Substrate Profile Analysis and ACP-Mediated Acyl Transfer in Streptomyces coelicolor Type III Polyketide Synthases

ChemBioChem

DOI: 10.1002/cbic.200700026

Protein partners. We report the biochemical characterization of two type III polyketide synthases (PKS) from *Streptomyces coelicolor*. Remarkably, germicidin synthase (Gcs)/SCO7221 was able to utilize both acyl-CoA and acyl-ACP as starter units for the production of pyrone containing compounds.


Electron Transfer

A. Van Vooren, V. Lemaur, A. Ye,D. Beljonne, J. Cornil*

Impact of Bridging Units on the Dynamics of Photoinduced Charge Generation and Charge Recombination in Donor-Acceptor Dyads

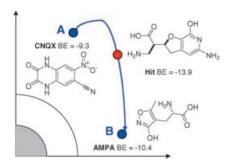
ChemPhysChem

DOI: 10.1002/cphc.200700130

Donor-bridge-acceptor architectures:

The authors estimate, at a full quantum-chemical level, the various molecular parameters governing charge-transfer rates in model organic struc-

tures containing a donor and an acceptor unit connected by a bridging unit (see picture). The nature, size, and conformation of the bridging unit have been systematically varied.


Cheminformatics

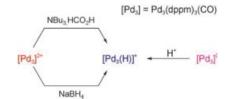
R. van Deursen, J.-L. Reymond

Chemical Space Travel

ChemMedChem

DOI: 10.1002/cmdc.200700021

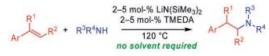
Space the final frontier! Modern medicine depends on the discovery of new drugs however, detailed knowledge of all possible organic molecules is not available. To travel in this so-called chemical space and discover new compounds, we wrote a spaceship program combining a point mutation generator with a selection module for target similarity. Thus, allowing travel from a starting molecule A to a target molecule B through a continuum of structural mutations.


... ON OUR SISTER JOURNALS

An unprecedented hydride adduct was formed upon the addition of formate to a dicationic palladium cluster $[Pd_3-(dppm)_3(\mu_3-CO)]^{2+}$ (dppm=bis(diphenylphosphinomethane). This is just one of the routes that can be used to form this product (see scheme). The palladium–hydride cluster has been fully

characterised by both spectroscopic

and electroanalytical methods.


Cluster Compounds

C. Cugnet, D. Lucas,* E. Collange, B. Hanquet, A. Vallat, Y. Mugnier, A. Soldera, P. D. Harvey*

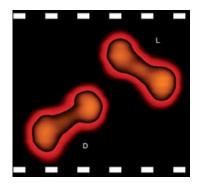
Generation, Characterization, and Electrochemical Behavior of the Palladium–Hydride Cluster $[Pd_3(dppm)_3(\mu_3\text{-CO})(\mu_3\text{-H})]^+ \\ (dppm = Bis(diphenylphosphinomethane)$

Chem. Eur. J.

DOI: 10.1002/chem.200700069

LiN(SiMe₃)₂/TMEDA is an efficient catalyst for the anti-Markovnikov addition of primary and secondary amines to vinylarenes. Reactions proceed readily at 120 °C in the absence

of solvent. The mechanism of the lithium-catalyzed hydroamination and the influence of TMEDA was studied with DFT methods.


Hydroamination

P. Horrillo-Martínez, K. C. Hultzsch,* A. Gil, V. Branchadell

Base-Catalyzed Anti-Markovnikov Hydroamination of Vinylarenes – Scope, Limitations and Computational Studies

Eur. J. Org. Chem.

DOI: 10.1002/ejoc.200700147

Lights, camera, action! The general mechanism of biomolecular recognition introduced by Pauling more than 50 years ago has now been brought to the movie screen (see still frame; D: D-Phe-D-Phe, L: L-Phe-L-Phe). With STM movies, the chiral-recognition process of individual adsorbed di-phenylalanine molecules is followed to illustrate the dynamic induced-fit mechanism at the single-molecule level.

Molecular Recognition

M. Lingenfelder,* G. Tomba,G. Costantini, L. Colombi Ciacchi,A. De Vita, K. Kern

Tracking the Chiral Recognition of Adsorbed Dipeptides at the Single-Molecule Level

Angew. Chem. Int. Ed. DOI: 10.1002/anie.200700194

On these pages, we feature a selection of the excellent work that has recently been published in our sister journals. If you are reading these pages on a computer, click on any of

the items to read the full article. Otherwise please see the DOIs for easy online access through Wiley InterScience.